Muscarinic and Nicotinic Contribution to Contrast Sensitivity of Macaque Area V1 Neurons
نویسندگان
چکیده
Acetylcholine is a neuromodulator that shapes information processing in different cortical and subcortical areas. Cell type and location specific cholinergic receptor distributions suggest that acetylcholine in macaque striate cortex should boost feed-forward driven activity, while also reducing population excitability by increasing inhibitory tone. Studies using cholinergic agonists in anesthetized primate V1 have yielded conflicting evidence for such a proposal. Here we investigated how muscarinic or nicotinic receptor blockade affect neuronal excitability and contrast response functions in awake macaque area V1. Muscarinic or nicotinic receptor blockade caused reduced activity for all contrasts tested, without affecting the contrast where neurons reach their half maximal response (c50). The activity reduction upon muscarinic and nicotinic blockade resulted in reduced neuronal contrast sensitivity, as assessed through neurometric functions. In the majority of cells receptor blockade was best described by a response gain model (a multiplicative scaling of responses), indicating that ACh is involved in signal enhancement, not saliency filtering in macaque V1.
منابع مشابه
Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque
BACKGROUND In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulati...
متن کاملExpression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human.
Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-...
متن کاملCholinergic modulation of response gain in the primary visual cortex of the macaque.
ACh modulates neuronal activity throughout the cerebral cortex, including the primary visual cortex (V1). However, a number of issues regarding this modulation remain unknown, such as the effect and its function and the receptor subtypes involved. To address these issues, we combined extracellular single-unit recordings and microiontophoretic administration of ACh and measured V1 neuronal respo...
متن کاملDifferential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey.
Cholinergic neuromodulation, a candidate mechanism for aspects of attention, is complex and is not well understood. Because structure constrains function, quantitative anatomy is an invaluable tool for reducing such a challenging problem. Our goal was to determine the extent to which m1 and m2 muscarinic acetylcholine receptors (mAChRs) are expressed by inhibitory vs. excitatory neurons in the ...
متن کاملCholinergic and serotonergic modulation of visual information processing in monkey V1
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the p...
متن کامل